Instability in Models Connected with Fluid Flows II - Claude Bardos

eTEXT

Instability in Models Connected with Fluid Flows II

By: Claude Bardos, ?Andrei V. Fursikov

eText | 20 December 2007 | Edition Number 1

At a Glance

eText


$239.00

or 4 interest-free payments of $59.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Stability is a very important property of mathematical models simulating physical processes which provides an adequate description of the process. Starting from the classical notion of the well-posedness in the Hadamard sense, this notion was adapted to different areas of research and at present is understood, depending on the physical problem under consideration, as the Lyapunov stability of stationary solutions, stability of specified initial data, stability of averaged models, etc. The stability property is of great interest for researchers in many fields such as mathematical analysis, theory of partial differential equations, optimal control, numerical analysis, fluid mechanics, etc. etc. The variety of recent results, surveys, methods and approaches to different models presented by leading world-known mathematicians, makes both volumes devoted to the stability and instability of mathematical models in fluid mechanics very attractive for provisional buyers/readers working in the above mentioned and related areas.
Read online on
Desktop
Tablet
Mobile

More in Mechanical Engineering