Introduction to Regression Methods for Public Health Using R - Ramzi W. Nahhas

eTEXT

Introduction to Regression Methods for Public Health Using R

By: Ramzi W. Nahhas

eText | 19 December 2024 | Edition Number 1

At a Glance

eText


$187.00

or 4 interest-free payments of $46.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Introduction to Regression Methods for Public Health Using R teaches regression methods for continuous, binary, ordinal, and time-to-event outcomes using R as a tool. Regression is a useful tool for understanding the associations between an outcome and a set of explanatory variables, and regression methods are commonly used in many fields, including epidemiology, public health, and clinical research. The focus of this book is on understanding and fitting regression models, diagnosing model fit, and interpreting and writing up results. Examples are drawn from public health and clinical studies. Designed for students, researchers, and practitioners with a basic understanding of introductory statistics, this book teaches the basics of regression and how to implement regression methods using R, allowing the reader to enhance their understanding and begin to grasp new concepts and models.

The text includes an overview of regression (Chapter 2); how to examine and summarize the data (Chapter 3), simple (Chapter 4) and multiple (Chapter 5) linear regression; binary, ordinal, and conditional logistic regression, and log-binomial regression (Chapter 6); Cox proportional hazards regression (survival analysis) (Chapter 7); handling data arising from a complex survey design (Chapter 8); and multiple imputation of missing data (Chapter 9). Each chapter closes with a comprehensive set of exercises.

Key Features:

  • Comprehensive coverage of the most commonly used regression methods, as well as how to use regression with complex survey data or missing data
  • Accessible to those with only a first course in statistics
  • Serves as a course textbook, as well as a reference for public health and clinical researchers seeking to learn regression and/or how to use R to do regression analyses
  • Includes examples of how to diagnose the fit of a regression model
  • Includes examples of how to summarize, visualize, table, and write up the results
  • Includes R code to run the examples
Read online on
Desktop
Tablet
Mobile

More in Probability & Statistics

Mathematics in Biology - Markus Meister

eBOOK

RRP $201.05

$160.99

20%
OFF
Business Statistics - Knowledge Flow

eBOOK

Statistics by Simulation : A Synthetic Data Approach - Carsten F. Dormann

eBOOK