Learning OpenCV 3 : Computer Vision in C++ with the OpenCV Library - Adrian Kaehler

eTEXT

Learning OpenCV 3

Computer Vision in C++ with the OpenCV Library

By: Adrian Kaehler, Gary Bradski

eText | 14 December 2016 | Edition Number 1

At a Glance

eText


$64.89

or 4 interest-free payments of $16.22 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Get started in the rapidly expanding field of computer vision with this practical guide. Written by Adrian Kaehler and Gary Bradski, creator of the open source OpenCV library, this book provides a thorough introduction for developers, academics, roboticists, and hobbyists. You'll learn what it takes to build applications that enable computers to "see" and make decisions based on that data.

With over 500 functions that span many areas in vision, OpenCV is used for commercial applications such as security, medical imaging, pattern and face recognition, robotics, and factory product inspection. This book gives you a firm grounding in computer vision and OpenCV for building simple or sophisticated vision applications. Hands-on exercises in each chapter help you apply what you've learned.

This volume covers the entire library, in its modern C++ implementation, including machine learning tools for computer vision.

  • Learn OpenCV data types, array types, and array operations
  • Capture and store still and video images with HighGUI
  • Transform images to stretch, shrink, warp, remap, and repair
  • Explore pattern recognition, including face detection
  • Track objects and motion through the visual field
  • Reconstruct 3D images from stereo vision
  • Discover basic and advanced machine learning techniques in OpenCV
Read online on
Desktop
Tablet
Mobile

More in Computer Vision