
eTEXT
At a Glance
eText
$181.50
Instant online reading in your Booktopia eTextbook Library *
Read online on
Not downloadable to your eReader or an app
Why choose an eTextbook?
Instant Access *
Purchase and read your book immediately
Read Aloud
Listen and follow along as Bookshelf reads to you
Study Tools
Built-in study tools like highlights and more
* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Key features:
* Presents a unified approach to examining discretization methods for parabolic equations.
* Highlights a stability theory of discrete evolution equations (discrete semigroups) in Banach space.
* Deals with both autonomous and non-autonomous equations as well as with equations with memory.
* Offers a series of numerous well-posedness and convergence results for various discretization methods as applied to abstract parabolic equations; among others, Runge-Kutta and linear multistep methods as well as certain operator splitting methods.
* Provides comments of results and historical remarks after each chapter.
· Presents a unified approach to examining discretization methods for parabolic equations.
· Highlights a stability theory of discrete evolution equations (discrete semigroups) in Banach space.
· Deals with both autonomous and non-autonomous equations as well as with equations with memory.
· Offers a series of numerous well-posedness and convergence results for various discretization methods as applied to abstract parabolic equations; among others, Runge-Kutta and linear multistep methods as well as certain operator splitting methods as well as certain operator splitting methods are studied in detail.
·Provides comments of results and historical remarks after each chapter.
Read online on
ISBN: 9780080462080
ISBN-10: 0080462081
Series: North-Holland Mathematics Studies : Book 203
Published: 2nd December 2005
Format: ePUB
Language: English
Number of Pages: 302
Publisher: Elsevier S & T
Volume Number: 203