Network Synthesis Problems - C. Wynants

eTEXT

Network Synthesis Problems

By: C. Wynants

eText | 14 March 2013

At a Glance

eText


$159.01

or 4 interest-free payments of $39.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
As the telecommunication industry introduces new sophisticated technologies, the nature of services and the volume of demands have changed. Indeed, a broad range of new services for users appear, combining voice, data, graphics, video, etc. This implies new planning issues. Fiber transmission systems that can carry large amounts of data on a few strands of wire were introduced. These systems have such a large bandwidth that the failure of even a single transmission link: in the network can create a severe service loss to customers. Therefore, a very high level of service reliability is becoming imperative for both system users and service providers. Since equipment failures and accidents cannot be avoided entirely, networks have to be designed so as to "survive" failures. This is done by judiciously installing spare capacity over the network so that all traffic interrupted by a failure may be diverted around that failure by way of this spare or reserve capacity. This of course translates into huge investments for network operators. Designing such survivable networks while minimizing spare capacity costs is, not surprisingly, a major concern of operating companies which gives rise to very difficult combinatorial problems. In order to make telecommunication networks survivable, one can essentially use two different strategies: protection or restoration. The protection approach preas­ signs spare capacity to protect each element of the network independently, while the restoration approach spreads the redundant capacity over the whole network and uses it as required in order to restore the disrupted traffic.
Read online on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 3rd December 2010

More in Applied Mathematics