Non-Euclidean Laguerre Geometry and Incircular Nets : SpringerBriefs in Mathematics - Alexander I. Bobenko

eTEXT

Non-Euclidean Laguerre Geometry and Incircular Nets

By: Alexander I. Bobenko, Carl O.R. Lutz, Helmut Pottmann, Jan Techter

eText | 29 October 2021

At a Glance

eText


$99.00

or 4 interest-free payments of $24.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This textbook is a comprehensive and yet accessible introduction to non-Euclidean Laguerre geometry, for which there exists no previous systematic presentation in the literature. Moreover, we present new results by demonstrating all essential features of Laguerre geometry on the example of checkerboard incircular nets.

Classical (Euclidean) Laguerre geometry studies oriented hyperplanes, oriented hyperspheres, and their oriented contact in Euclidean space. We describe how this can be generalized to arbitrary Cayley-Klein spaces, in particular hyperbolic and elliptic space, and study the corresponding groups of Laguerre transformations. We give an introduction to Lie geometry and describe how these Laguerre geometries can be obtained as subgeometries. As an application of two-dimensional Lie and Laguerre geometry we study the properties of checkerboard incircular nets.

Read online on
Desktop
Tablet
Mobile

More in Geometry

Discrete and Computational Geometry, 2nd Edition - Satyan L. Devadoss

eBOOK

Sum Stories : Equations and Their Origins - Robin Wilson

eBOOK

A Mathematical Tour - Denis Bell

eTEXT