Nonlinear Systems and Their Remarkable Mathematical Structures : Volume 1 - Norbert Euler

eTEXT

Nonlinear Systems and Their Remarkable Mathematical Structures

Volume 1

By: Norbert Euler

eText | 19 November 2018 | Edition Number 1

At a Glance

eText


$104.50

or 4 interest-free payments of $26.13 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Nonlinear Systems and Their Remarkable Mathematical Structures, Volume 1 aims to describe the recent progress in nonlinear differential equations and nonlinear dynamical systems (both continuous and discrete). Written by experts, each chapter is self-contained and aims to clearly illustrate some of the mathematical theories of nonlinear systems. The book should be suitable for some graduate and postgraduate students in mathematics, the natural sciences, and engineering sciences, as well as for researchers (both pure and applied) interested in nonlinear systems. The common theme throughout the book is on solvable and integrable nonlinear systems of equations and methods/theories that can be applied to analyze those systems. Some applications are also discussed. Features: Collects contributions on recent advances in the subject of nonlinear systems Aims to make the advanced mathematical methods accessible to the non-expert in this field Written to be accessible to some graduate and postgraduate students in mathematics and applied mathematics Serves as a literature source in nonlinear systems
Read online on
Desktop
Tablet
Mobile

More in Applied Mathematics