Ordered Porous Nanostructures and Applications - Ralf B. Wehrspohn

eTEXT

Ordered Porous Nanostructures and Applications

By: Ralf B. Wehrspohn

eText | 14 June 2006 | Edition Number 1

At a Glance

eText


$159.01

or 4 interest-free payments of $39.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Ordered porous nanostructures have emerged in the last ten years in different kinds of materials and with different pore diameters and interpore spacing. This book reviews in the first part which kinds of materials exhibit ordered nanopores and what are the physico-chemical reasons for it. In the second part, this book discusses the possible applications from photonic crystals via high-throughput screening to metallic and polymer-nanowire arrays and their use in the case of ferromagnetic wires as high-density magnetic storage medium. This book reviews the most interesting materials on the market concerning self-ordering, including: macroporous silicon, porous alumina, MCM41 and photonic bandgap materials, which is one of the hottest topics in optics and nano-technology in the last five years, according to Science magazine. In computer applications, these structures enable significantly higher storage densities than are possible with thin film media. Moreover, these structures find uses in template fabrication for nanowire-arrays, high-throughput screening, lab-on-a-chip, ULSI circuitry for trenches and capacitors.
Read online on
Desktop
Tablet
Mobile

More in Biotechnology

Biophysical Chemistry - Dagmar Klostermeier

eTEXT