Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics - V.I. Shalashilin

eTEXT

Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics

By: V.I. Shalashilin, E. B. Kuznetsov

eText | 14 March 2013

At a Glance

eText


$84.99

or 4 interest-free payments of $21.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
A decade has passed since Problems of Nonlinear Deformation, the first book by E.I. Grigoliuk: and V.I. Shalashilin was published. That work gave a systematic account of the parametric continuation method. Ever since, the understanding of this method has sufficiently broadened. Previously this method was considered as a way to construct solution sets of nonlinear problems with a parameter. Now it is c1ear that one parametric continuation algorithm can efficiently work for building up any parametric set. This fact significantly widens its potential applications. A curve is the simplest example of such a set, and it can be used for solving various problems, inc1uding the Cauchy problem for ordinary differential equations (ODE), interpolation and approximation of curves, etc. Research in this area has led to exciting results. The most interesting of such is the understanding and proof of the fact that the length of the arc calculated along this solution curve is the optimal continuation parameter for this solution. We will refer to the continuation solution with the optimal parameter as the best parametrization and in this book we have applied this method to variable c1asses of problems: in chapter 1 to non-linear problems with a parameter, in chapters 2 and 3 to initial value problems for ODE, in particular to stiff problems, in chapters 4 and 5 to differential-algebraic and functional differential equations.
Read online on
Desktop
Tablet
Mobile

More in Differential Calculus & Equations

An Introduction to Applied Numerical Analysis - M Ali Hooshyar

eBOOK