Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures - René Dáger

eTEXT

Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures

By: René Dáger, Enrique Zuazua

eText | 23 August 2006

At a Glance

eText


$74.99

or 4 interest-free payments of $18.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Read online on
Desktop
Tablet
Mobile

Not downloadable to your eReader or an app

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
This book is devoted to analyze the vibrations of simpli?ed 1? d models of multi-body structures consisting of a ?nite number of ?exible strings d- tributed along planar graphs. We?rstdiscussissueson existence and uniquenessof solutions that can be solved by standard methods (energy arguments, semigroup theory, separation ofvariables,transposition,...).Thenweanalyzehowsolutionspropagatealong the graph as the time evolves, addressing the problem of the observation of waves. Roughly, the question of observability can be formulated as follows: Can we obtain complete information on the vibrations by making measu- ments in one single extreme of the network? This formulation is relevant both in the context of control and inverse problems. UsingtheFourierdevelopmentofsolutionsandtechniquesofNonharmonic Fourier Analysis, we give spectral conditions that guarantee the observability property to hold in any time larger than twice the total length of the network in a suitable Hilbert space that can be characterized in terms of Fourier series by means of properly chosen weights. When the network graph is a tree, we characterize these weights in terms of the eigenvalues of the corresponding elliptic problem. The resulting weighted observability inequality allows id- tifying the observable energy in Sobolev terms in some particular cases. That is the case, for instance, when the network is star-shaped and the ratios of the lengths of its strings are algebraic irrational numbers.
Read online on
Desktop
Tablet
Mobile

More in Cybernetics & Systems Theory

X-Events : The Collapse of Everything - John L. Casti

eBOOK

RRP $24.19

$19.99

17%
OFF
The Science of Happy - King Poet

eBOOK

The Unity of Forces - manoranjan ghoshal

eBOOK